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SYNOPSIS 

When characterizing solutions of random coil polymers by static light scattering (SLS) or 
dynamic light scattering (DLS), linear regression is used to fit experimental data to theoretical 
relationships. These relationships are expressed as polynomial equations, which contain two 
independent variables-sample concentration and scattering angle-and a response or de- 
pendent variable that is related to radiation intensities (SLS) or intensity fluctuations (DLS). 
The coefficients of the terms in the polynomial are used to estimate parameters such as 
molecular weight and polymer coil radius of gyration. One major problem during data analysis 
involves deciding which polynomial model is appropriate for use with the data that inherently 
contains a high level of random noise that is produced by the presence of dust in the solutions. 
Dust is an especially troublesome problem when dealing with large polymers in aqueous 
solutions. Polynomial models having more terms than justified are unacceptable because the 
coefficients of' these models are excessively corrupted by the noise. Thus, conclusions from 
unjustified models can be erroneous. This article discusses use of a factorial experimental 
design technique that obtains an acceptable model for fitting light scattering data containing 
high levels of random noise. @ 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Light scattering has been used extensively in the 
past to characterize high molecular weight, water- 
soluble After dust-free dilute polymer 
solutions are obtained by filtration or centrifugation, 
collection of scattering data is very fast and can be 
automated. Light scattering has no upper molecular 
weight limit and can be used for both organic soluble 
as well as aqueous soluble macromolecules. Most 
modern instruments are capable of performing both 
static and dynamic light-scattering experiments. 

When analyzing information on polymer solu- 
tions from both static light-scattering (SLS) and 
dynamic or quasielastic light-scattering ( DLS ) ex- 
perimentation, linear regression is used to fit data 
to theoretical relationships. These relationships are 
usually expressed as polynomial equations. These 
equations contain two independent variables- 
sample concentration and scattering angle-and a 
response or dependent variable related to radiation 
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intensities, as is the case for SLS, or apparent 
translational diffusion coefficients for DLS. The 
coefficients of the polynomials can be related to 
macromolecular parameters such as molecular 
weight, coil radius of gyration, and solvent-polymer 
interaction. Thus, accurate calculation of the poly- 
nomial coefficients is essential for proper interpre- 
tation of the experimental data. 

A major difficulty in data analysis involves de- 
termining which polynomial model is appropriate 
when dealing with real data that is inherently im- 
precise because it contains random experimental 
noise. The noise level can be especially high for 
aqueous polymer solutions that tend to attract and 
retain dust. Also, as the average polymer size and/ 
or molecular weight distribution increases, solution 
cleanup by filtration or centrifugation becomes lim- 
ited because the polymer molecules in solution and 
dust particles approach the same size. Thus, the ex- 
perimenter is forced to deal with the high uncertainly 
always introduced into the scattering data by a large 
level of noise. Under these situations, a statistical 
approach must be applied to define the appropriate 
polynomial model that can be used. 
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As the noise level increases, statistical arguments 
can be used to show that only lower degree poly- 
nomials can be justified unless very large quantities 
of data are taken or the level of confidence for es- 
timating coefficients is lowered to unacceptable val- 
ues. LJsually, confidence levels are set in the 90 to 
95% range to diminish both Type I and Type I1 er- 
r o r ~ . ~  A Type I error is one that rejects a model when 
it should be accepted, and a Type I1 error is one that 
accepts a model when it should be rejected. Models 
having more terms than justified by the data are 
corrupted because they are fitting excess noise into 
the model. In this case, the model will lead the ex- 
perimenter to erroneous conclusions. 

This article discusses the analysis of light-scat- 
tering data by using a two-variable, four-level fac- 
torial experimental design technique that employs 
the advantages of orthogonal polynomials. Surface 
analysis of the polynomial model that was justified 
by the experimental design will also be done using 
a contour plotting technique originally suggested by 
2imm.G 

LIGHT-SCATTERING TEST MODEL 

In the case of light scattering, a good model for the 
experiment is a polynomial equation of the form 

R = Bo + B1X + B2X2  + B R X Y  

+ BIY + B5Y2 (1) 

In eq. ( 1 ) , R is the measured response and is de- 
pendent upon the independent variables X and Y ,  
which are set by the experimenter. Note that this 
polynomial is second order with respect to both in- 
dependent variables, and also has a term that ac- 
counts for possible interaction between the two vari- 
ables. Thus, the surface described by eq. (1) can be 
curved. The B parameters are the coefficients that 
are to be estimated by fitting eq. (1) to the experi- 
mental data obtained from a set of test conditions. 
In light scattering, X is the square of the sin of half 
the scattering angle, 0, and Y is the polymer concen- 
tration, C, in the solution scattering the radiation. 

The response variable, R ,  measured at each test 
condition, depends upon the type of scattering ex- 
periment. For SLS 

(4) 

where K is an optical constant and R, is the Ray- 
leigh ratio, which is a measure of the intensity of 
the scattered radiation a t  angle 0. For DLS, R is 
the apparent translational diffusion coefficient, 
Dapp, measured a t  the test condition. I t  is deter- 
mined from a digital autocorrelation of the scat- 
tered radiation intensity variation that  is produced 
by polymer center of mass motion. 

R = D a p p  ( 5 )  

The test model proposed for light scattering is 
consistent with theoretical expectations for poly- 
dispersed linear macromolecules that  behave as 
random coils in solution. However, some terms in 
the test model may not be justified, depending upon 
the polymer-solvent system under study and the in- 
strument’s capabilities. Indeed, in some unusual 
cases, such as use of abnormally high solution con- 
centrations or high scattering angles, the test model 
may need additional higher order terms. However, 
in most light scattering experiments using dilute so- 
lutions, the proposed polynomial test model should 
be adequate. After regression, all B coefficients not 
justified in the test model will be set to zero. In most 
cases, a simpler model, having fewer terms, will 
evolve after fitting the test model to the scattering 
data. Fitting of the test model by linear regression 
of data obtained from an orthogonal factorial test 
design is an efficient mathematical technique to es- 
timate the values of all coefficients in the test model. 

ORTHOGONAL FACTORIAL TEST DESIGN 

When using light scattering to characterize a poly- 
mer, it is convenient to measure responses using four 
sample concentrations. At each sample concentra- 
tion, four scattering angles are used. Thus, 16 test 
conditions are established when characterizing a 
polymer solution by light scattering. 

The scattering can usually be conducted such that 
both sample concentrations and angles of measure- 
ment are equally spaced so that a factorial experi- 
mental design can be p e r f ~ r m e d . ~  Independent vari- 
ables can then be scaled or transformed into a coded 
space. For example, if X and Yare varied by spacings 
2AX and 2AY, respectively, such that four levels 
exist for each variable, then the coded space vari- 
ables, x and y ,  can be defined by eqs. (6)  and ( 7 ) .  
Each coded independent variable will have four val- 
ues, -3, -1, 1, and 3, which represent the four test 
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Table I 4' Experimental Factorial Design 

Coded Level Coded Level 
Test Condition for Independent for Independent 

Number Variable x Variable y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

-3 
-3 
-3 
-3 
-1 
-1 
-1 
-1 

1 
1 
1 
1 
3 
3 
3 
3 

-3 
-1 

1 
3 

-3 
-1 

1 
3 

-3 
-1 

1 
3 

-3 
-1 

1 
3 

condition levels, low, middle low, middle high, and 
high, respectively. 

X - X  x=- 
A X  
v -  v 

In the equations above, X and Yare the averages 

We can now write the following coded space test 
of the four X and four Y values, respectively. 

model for each of the 16 test conditions. 

We can center eq. (8) by subtracting the average 
of all test condition responses, R = bo + 5b2 + 5b5. 
This gives 

We can use eq. ( 9 )  to  write 16 equations that  
describe the 16 test conditions. These equations can 
then be arranged into a 42 factorial design (two in- 
dependent variables each having four levels) to form 
a set of orthogonal polynomial equations. Table I 
shows how the test conditions should be arranged 
to obtain a set of equations having orthogonal prop- 
erties. Linear regression can then be performed on 
this set of equations to estimate the values of the 

coded coefficients in the scaled and centered test 
model, eq. (9 ) .  

Higher order factorial designs could be used to 
improve data analysis when' dealing with samples 
scattering light in a highly nonlinear manner. For 
example, a 5' or 6' design could be used; however, 
the number of test conditions or experimental effort 
increases to the square of the number of levels. 

LINEAR REGRESSION IN CODED SPACE 

Matrix algebra can be used on the set of orthogonal 
equations formed by eq. ( 9 )  to  find the vector b ,  
which has the estimated values of coded space coef- 
ficients b1 through b5. Coefficient bo can be found by 
recalling that bo = R - 5 ( b2 + b,) . The matrix op- 
eration to find the vector b is given by 

where R is the response vector, _M is the matrix of 
coded test conditions, MT is the transpose of _M and 
( M T M ) - '  is the inverseof the product of and 
- M. The matrix _M is shown in Table 11. E a c h f  the 
rows of the matrix _M describes one of the 16 test 
conditions. Each column of a row, starting with the 
second column to the left, gives values of x,  ( x2 - 5) ,  
xy,  y ,  and ( y 2  - 5)  for that test condition. 

_ -  
- 

CONFIDENCE INTERVAL FOR CODED 
SPACE TEST MODEL COEFFICIENTS 

The variance of the six coefficients in the vector b 
can be determined if the experimental standard error 

Table I1 Matrix M 

X x* - 5 X Y  Y y2 - 5 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

-3 
-3 
-3 
-3 
-1 
-1 
-1 
-1 

1 
1 
1 
1 
3 
3 
3 
3 

4 
4 
4 
4 

-4 
-4 
-4 
-4 
-4 
-4 
-4 
-4 
4 
4 
4 
4 

9 -3 
3 -1 

-3 1 
9 3 
3 -3 
1 -1 

-1 1 
-3 3 
-3 -3 
-1 -1 

1 1 
3 3 

-9 -3 
-3 -1 

3 1 
9 3 

4 
-4 
-4 
4 
4 

-4 
-4 
4 
4 

-4 
-4 
4 
4 

-4 
-4 
4 
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associated with the test conditions, se ,  can be esti- 
mated. Replications of a test condition or conditions 
can be used to estimate s,. If g test conditions are 
truly replicated, then the variance of each set of z 
measurements a t  each test condition, u ,  having z 
- 1 degrees of freedom, can be pooled to find an 
estimate of s, by the following relationship.* 

The elements on the diagonal of the variance- 
covariance matrix, v, contain the variances for the 
coefficients of vec to3 .  This matrix can be evaluated 
by the following operation 

For example, the variances of the coefficients b, 
and b2, which are designated u1 and up are matrix 
elements V ,  and L2, respectively. Because of the 

nature of an orthogonal experimental design, the 
covariance terms (elements not on the diagonal) in 
the matrix will be zero. No variance exists due 
to interactions between coefficients. Thus, the es- 
timated standard error of each coefficient, s,, where 
j varies from 1 to 5, is the square root of its variance 
found in matrix Y. However, because bo is calculated 
from the v a l u e s f  b2 and b,, its variance, uo, must 
be calculated as uo = 25u2 + 25u5 + Lo. 

A Student t distribution can now be used to make 
confidence limits on each coefficient. The (1 - a )  
confidence limits for each of the six coefficients are 
given by (b,  2 t,,,2s,). A good value to use for the 
significance, a, is 0.10 (90% confidence). The tab- 
ulated value for toos a t  10 degrees of freedom (16 
test conditions less 6 fitted coefficients gives 10 de- 
grees of freedom) is 1.81. 

If the confidence limit for a coefficient overlaps 
with zero, that coefficient cannot be justified and its 
value can be set to zero. Thus, this t-test eliminates 
unjustified terms in the coded test model and pre- 
vents overfitting of the data to a model having too 
many parameters. If b2 or b5 is eliminated (set to 
zero) by the t-test, then the value for bo and its vari- 
ance, uo, should be recalculated. Recall that bo = R 
- 5 ( b2 + b,) and uo = 25v2 + 25u5 + V,, . 

~ ~ 

~ 

__ 

ADJUSTED CORRELATION COEFFl C l  ENT 

After the t-test, a measure of how good the coded 
model fits the experimental data can be made by 

calculating the correlation coefficient, r? As the fit 
improves, the value of r will approach one. If R is 
the response vector containing m values ( m  = 16)  
and having an average of R ,  then 

COEFFICIENTS OF THE REAL-SPACE TEST 
MODEL 

After the values of the coefficients in the coded test 
model have been determined, then the coefficients 
for the real-space test model can be calculated from 
the following relationships. 

b,X b2X2  b,XY 
AX AX2 A X A Y  

Bo = bo - c_ + - + ~ 

b5 

A Y 2  
B5 = ~ 

After substitution of the values for coefficients 
Bo through B5, eq. ( 1 ) can be evaluated using a sur- 
face analysis technique originally developed by 
Zimm. 

STANDARD ERROR O F  REAL-SPACE TEST 
MODEL COEFFICIENTS 

The variance, u, of a dependent variable, u, which 
is a known function of m independent variables, w l ,  
w2,  . . . , w,, can be estimated from the variance of 
the independent variables uWi, and the known func- 
tion, f .  If u = f ( w l ,  w 2 ,  - - - w,,,) then the variance 
of u is given by15 
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The standard error of u is the square root of its 
variance, v,. 

We can use the above relationship to  find the 
variances of the coefficients of the real space model, 
which are calculated from eqs. (14) through (19), 
from the variances of the coded space model coef- 
ficients, u,. Equations (14) through (19) are the 
functions from which the partial derivatives of eq. 
20 can be determined. Recall that  the variances of 
the coded space coefficients were determined from 
eq. (12). If some of the coded test model coefficients 
are set to zero by the t-test, then the variances of 
these coefficients should also be set to zero. If b2 
and/or b5 were set to  zero, then the values of bo and 
its variance, uo, should be recalculated. Thereafter, 
the standard error of each real space model coeffi- 
cient, S,, can be found using eq. (20). 

SO 
I 

X 2 v ,  X 4 v 2  X2Y2v3 Y2v, Y 4 v 5  
= \p0 + - f- +-+7 

A X 2  A X 4 + A X 2 A Y 2  A Y 2  

' 2  = \&$ 
I 

SURFACE ANALYSIS OF THE MODEL 
EQUATION 

Using Zimm's technique, experimental measure- 
ments of scattering response, K C / R o  for SLS or Dapp 
for DLS, are plotted as the ordinate vs. a compound 
abscissa, sin2(O/2) + hC. Use of the compound ab- 
scissa forces the points on the plot to be displaced 
from each other. This effect is due to the spacing 
constant k .  The value of h is arbitrarily selected to 

provide adequate distance between the experimental 
data points. The set of points displays the complete 
response grid of the scattering experiment. When a 
42 factorial design is used, 16 data points will form 
the surface response grid. 

In the original Zimm technique, this grid was used 
to form lines of constant angles and lines of constant 
concentration. The lines of constant concentration 
were linearly extrapolated to give a set of points 
that  had zero concentration. Also, the lines of con- 
stant angles were linearly extrapolated to give a set 
of points that have zero angle. The straight line fitted 
to the zero concentration points and the straight 
line fitted to the zero angle points should intercept 
the ordinate a t  the same position. This common in- 
tercept is the reciprocal of the molecular weight for 
a SLS experiment or is the true translational dif- 
fusional coefficient for a DLS experiment. The 
slopes of the two straight lines can be used to find 
other polymer parameters. 

Unfortunately, linear extrapolation does not work 
when the data points on the Zimm plot form curves 
instead of straight lines. This is the usual situation 
when analyzing high molecular weight water-soluble 
polymers. In this situation, the model equation de- 
veloped from the 42 factorial design and justified by 
the t-test can be used to plot the four constant con- 
centration curves, the four constant angle curves, 
the zero concentration curve, and the zero angle 
curve associated with the experimental data in the 
Zimm plot. Both curves will intercept the ordinate 
a t  the same position, and this intersection point will 
be equal to the model equation coefficient Bo. 

The 16 intersections of the constant concentra- 
tion curves with the constant angle curves are the 
model equation fit points that correspond to the 16 
data points on the plot. Thus, a visual understanding 
of the model equation fit to the experimental data 
can be realized by noting the placement of data 
points relative to curve intersections. If an  experi- 
mental data point exactly corresponds to an inter- 
section of the two curves made a t  the angle and con- 
centration of that data point, then a perfect fit be- 
tween the model and data exists a t  that test 
condition. The greater the deviation of a data point 
from its corresponding intersection point, the more 
poorly the model fits that test condition. 

Use of the above factorial design experimentation 
and plotting procedures can best be demonstrated 
by giving three examples. In Example 1, a static light 
experiment was performed on a water-soluble co- 
polymer. In Example 2, the same copolymer was 
characterized by dynamic light scattering. Example 
3 is Example 1 redone without justifying the model. 
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EXPERIMENTAL 

The high molecular weight random copolymer em- 
ployed in the scattering experiments was supplied 
by C. L. McCormick, and was synthesized from 
acrylamide (AM) and 3-acrylamido-3-methylbu- 
tanoic acid (AMBA) monomers in the ratio of 95 
to  5, as  described in previous publications.lO*” The 
aqueous solvent used to  make the polymer solutions 
contained 0.514M NaCl and had a refractive index, 
n ,  of 1.338 at  25”C, with radiation having a wave- 
length, Xo,  of 6328 A. The solvent was filtered using 
a 0.02 micron Anotop 25 inorganic membrane man- 
ufactured by Whatman. The solvent viscosity, qo, 
was 0.934 cp. Polymer solutions were made by gentle 
mixing for a minimum of 4 days. Solution prepa- 
ration over this time scale minimized polymer ag- 
gregation. Immediately before SLS analysis the so- 
lutions were clarified by a syringe filter using a 1.0 
pm Puradisc 25AS polysulfone membrane manu- 
factured by Whatman. 

Four solutions were made that had polymer con- 
centrations of 0.04, 0.08, 0.12, and 0.16 g/liter. 
Light-scattering experiments were performed on 
these solutions at 25°C and a t  scattering angles of 
32.3,65,90, and 115 degrees using a BI-2030AT go- 
niometer equipped with a BI-DS photomultiplier 
and digital correlator manufactured by Brookhaven 
Instruments Corp. of Holtsville, NY. Duplicate 
measurements of intensity response, as KC/R,, were 
made for each of the 16 test conditions in SLS. 
Triplicate measurements of the apparent transla- 
tional diffusion coefficient, Dapp, were made for each 
of the 16 test conditions in DLS. The  Dapp values 
were calculated from the autocorrelation function 
using the cummulant technique.” 

The optical constant, K ,  used in SLS was cal- 
culated using a d n / d C  value of 0.1559 mL/g for the 
polymer-solvent system under study. The change in 
the refractive index with respect to solution con- 
centration, d n / d C ,  was measured using a KMX-16 
differential refractometer manufactured by Chro- 
matix Inc. of Sunnyvale, CA. The poIymer samples 
were not dialyzed to equilibrium with the solvent 
for d n / d  C measurements because this procedure is 
not necessary when the solvent ionic strength is 

All calculations were performed on a 80486 per- 
sonal computer using the program Mathcad 5.0f 
manufactured by Mathsoft Inc. of Cambridge, MA. 
The Zimm plots were also generated with this soft- 
ware using a spacing constant, k ,  of 5000 mL/g. 

All solution and 0.514M NaCl aqueous solvent 
viscosity measurements were made a t  25°C using a 
Contraves L30 rheometer. For each fluid, viscosities 

were determined at  3.2, 8.1, 14.9, and 27.5 s-’ shear 
rates and then extrapolated to find the “zero” shear 
fluid viscosity. The “zero” shear viscosities of four 
copolymer solutions containing 0.125, 0.100, 0.075, 
and 0.050 g/liter were then used to establish the 
copolymer intrinsic viscosity. 

EXAMPLE 1 (STATIC LIGHT SCATTERING) 

The theoretical relationship between the properties 
of a polymer sample in solution and its light-scat- 
tering characteristics is expressed by the Debye 
relationship” given by eq. (27) .  

167rzn2R:sinz(i) 
KC 1 

647r 4n R;f sin ‘( i) 
1 ,  

- + 2A2C + 3A3C2 
3 M,.A: 

+ other terms (27)  

In eq. (27) ,  M,. and R, are the polymer weight 
average molecular weight and the ‘‘2’’ average poly- 
mer coil radius of gyration, respectively. The second 
and third viral coefficients, A2 and A3 are related to  
solvent-polymer interactions. Note that eq. (27) can 
be expressed as test model eq. ( 1) when we let the 
variables 

KC 
R” 

R = -  

x = sin’( :) 
Y = C  

and let the B coefficients be defined as 

B1 = 167r2n2R,2 
3 Mu, A,” 

B3 = interaction coefficient 

B4 = 2A2 

B5 = 3A3 
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Table I11 Example 1 (SLS) Responses 

Test Measurement 1 Measurement 2 Average Response 
Condition mol/g x 107 mol/g x 107 mol/g x 107 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

2.60 
2.53 
2.81 
3.10 
5.55 
5.43 
5.84 
6.29 
9.68 
8.60 
9.06 
9.25 

11.28 
10.66 
10.84 
11.62 

2.15 
2.67 
2.97 
2.81 
4.75 
5.50 
6.26 
5.62 
7.21 
8.31 
9.12 
7.99 
9.07 

10.33 
11.37 
10.10 

2.38 
2.60 
2.89 
2.96 
5.15 
5.47 
6.05 
5.96 
8.45 
8.46 
9.09 
8.62 

10.18 
10.50 
11.11 
10.86 

Note that  we have defined the  “other terms” in 
eq. (27) as a single expression equal to  the product 
of an  interaction coefficient, BB, and variables X 
and Y .  

Values for X are 0.077, 0.289, 0.500, and 0.711. 
Thus, 2AX = 0.211 and X = 0.394. Recall values for 
Y are 0.04, 0.08, 0.12, and 0.16 g/liter. Thus, 2AY 
= 0.04 g/liter and = 0.10 g/liter. Because of the 
equal separation of the values used for independent 
variables X and Y,  we can use a 42 factorial design 
and then do a regression analysis to  find estimates 
of the model coefficients. Thereafter we can use a t- 
test to justify each coefficient of the model. 

Scattering experiments were performed according 
to  the design shown by Table I. The responses, KC/ 
RB in mol/g, to  the test conditions are shown in Table 
111. Two measurements were taken a t  each condi- 
tion. The average a t  each test condition of the two 

measurements was used to form the response vector, 
R, and is shown in the last column of Table 111. 
Because two response measurements were taken at 
each test condition, eq. (1 1) could be used to estimate 
the average experimental error, se, associated with 
a response to a test condition. The s, value obtained 
was 5.15 X lo-’ mol per gram. The average of all 
responses, R ,  was 6.92 X lo-? mol per gram. Thus, 
the standard experimental error is about 7% of the 
average response. 

The coded and scaled test model, eq. (9), can now 
be solved for the b coefficients using eq. (10). The 
results, vector b, are shown in Table IV along with 
the upper and lower 90% confidence limits. The 
limits were calculated by solving for the matrix _V 
and then calculating the limits (bj & to.ossj) after 
finding the sI values from the square root of the _V 
diagonal elements. 

- 

Table IV Example 1 (SLS) Coded Test Model Coefficients 

Confidence Limits 
Estimated Standard 

Coefficient Value” Error’ Upper Lower 

7.34 x 10-~ 2.61 X lo-’ 7.81 x 10-7 6.87 x 10-~ bo 
bl 1.34 x 10-~ 5.76 x 1.45 x 10-7 1.24 x 10-7 
b2 
b3 1.63 X lo-” 2.57 x 10-9 4.68 x 10-9 -4.64 x 10-9 
b, 

-2.52 x 3.22 x 10-9 3.30 x 10-9 -8.35 x 10-9 bs 

-5.90 x 10-9 3.22 x -7.45 x lo-” -1.17 X lo-’ 

1.11 x 10-8 5.76 x 10-9 2.15 X 6.51 X lo-” 

bo = R - 5 (b ,  + bs). 
bso = \/25u2 + 25u5 + V,. 
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Inspection of Table IV shows that coefficients b3 
and b5 are not significantly different from zero and, 
thus, their values and variances will be set to zero 
in subsequent calculations. Because b5 was set to 
zero, bo and so were recalculated as  7.21 X and 
2.06 X lo-*, respectively. Equations (14) through 
(19) can now be used to find the test model B coef- 
ficients. Next eqs. (311, (32), and (34) can be used 
to  find the polymer parameters Mu, Rg, and A2. 

Equation (20) can be used to find the standard 
error of the polymer parameters from the functions 
described by eqs. (311, (321, and (35). If SMw, S,, 
and SA2 are the standard error of the molecular 
weight, radius of gyration and second viral coeffi- 
cient, respectively, then 

s o  shfw = - 
B; 

s 4  
S A 2  = - 

2 

(37) 

The B coefficients, the polymer parameters, and 
all standard errors are listed in Table V. 

Figure 1, a Zimm plot, shows the average response 
for each test condition as "X' symbols, which are 
superimposed onto the curves constructed from the 
test model. Curves of constant angle are shown solid, 
curves of constant concentration are shown dashed, 
and the extrapolated zero concentration and zero 
angle curves are both shown dotted. The plot shows 
that the fit of the model equation to the experimental 
data is adequate. The adjusted correlation coeffi- 
cient, r, calculated from eq. (13), has a value of 0.997, 
which also indicates that the model gives a good fit 
to the data. 

EXAMPLE 2 ( D Y N A M I C  LIGHT 
SCATTER1 NG ) 

The apparent translational diffusional coefficient, 
Dapp, obtained by DLS is related to the true diffu- 
sional coefficient, Dtrue, by the relationship 

D~~~ = D~~~~ + a sin'( :) + P sin'( :) 
+ XC sin2(fl/2) + 6C + EC' (40) 

The coefficients, Dtrue, a, P, x, 6, ,$, are related to 
polymer-solvent properties. The parameters 6 and 

,$ are usually referred to as the second and third 
diffusional viral coefficients. They are related to  the 
interactions between solvent and polymer. The pa- 
rameter D,,, is the diffusional coefficient in the limit 
of zero polymer concentration and zero scattering 
angle, and is related to the hydrodynamic polymer 
coil radius, Rh, by the Stokes-Einstein equation. 

In eq. (41), hB is the Boltzman constant, T is the 
absolute temperature, and q0 is the solvent viscosity. 
For random coil polymers in solution, the coeffi- 
cients CY and are expected to be related to D,,, and 
Rg by the following relationships: l3 

16ir2n2 Dtrue Ri  
a =  

5x; 

- 128a4n4 Dtrue Ri  
5x: P =  (43) 

The coefficients 6 and [ are related to Dtrue and 
the polymer intrinsic viscosity, [ 171. 

The proportionality constants, K and u, are ex- 
pected to have values of 1.56 and -6.83, respec- 
tively." Jamieson' has suggested that K may have a 
lower value of' 0.58. 

Equation (40)  can be expressed as test model eq. 
(1) when we let the variables be defined as 

x = sin'( :) 
Y = C  

and let the B coefficients be defined as 

(47) 

( 4 8 )  
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Table V ExampIe 1 (SLS) Test Model Coefficients and Polymer Parameters 

Estimated Standard 
Estimated Value Standard Error Coefficient Value Error Polymer Parameter 

Bo 8.3 X 6.3 X lo-* Molecular weight, Mu 1.2 x lo7 g/mol 0.9 x 107 g/mol 
B1 
Bz 
R3 0 
B4 5.5 X 2.9 X Second virial coefficient, A 2  2.7 X mL mol/g2 1.4 X mL mol/g2 
B5 0 

1.7 X 2.4 X Radius of gyration, Rg 2900 A 1100 A 
- - -5.3 x 10-7 2.9 x 10-~ - 
- - - - 

- - - - 

Values for X ,  2 A X ,  X, Y ,  2 A Y ,  and y are the 
same as in the example for SLS and, thus, a 42  fac- 
torial design and t-test can be applied as  in Example 
1. The DLS responses, Dapp values in cm2/s, are 
shown in Table VI. Three measurements were taken 
a t  each of the 16 test conditions. The average a t  
each test condition of the three measurements was 
used to form the response vector, R ,  and is shown 
in the last column of Table VI. As in the SLS ex- 
ample, an experimental error, s,, was calculated to  
be 1.47 X lo-' cm2/s. The average response, l?, was 
3.13 X 10-'cm2/s. Thus, the standard experimental 
error is about 5% of the average response. 

The  coded and scaled test model, eq. ( 9 ) ,  can 
now be solved for the b coefficients using eq. (10) .  
The results, vector b ,  are shown in Table VII along 
with the upper and lower 90% confidence limits cal- 
culated by solving for the matrix v and then cal- 
culating the limits b, k to.ossj after finding the s, val- 
ues from the v diagonal elements. 

In spec t ion f  Table VII shows that  coefficients 
bd, b4, and b5 are not significantly different from 
zero and, thus, their values and variances will be set 
to  zero in subsequent calculations. Because b5 was 
set to zero, bo and so were recalculated as 3.39 X lo-' 
and 5.86 X lo-'*, respectively. Equations (14)  

KC / R e  

mole/g x lo7 

sin2(8/2) +-k C 
Figure 1 Zimm plot for Example 1 (SLS). 
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Table VI Example 2 (DLS) Responses 

Test Measurement 1 Measurement 2 Measurement 3 Average Response 
Condition cm2/s X 10' cm2/s x 10' cm'/s x 10' cm'/s x 10' 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1.95 
1.81 
1.36 
1.88 
3.04 
3.01 
3.09 
2.85 
3.80 
3.74 
3.62 
3.65 
3.92 
3.61 
4.14 
4.11 

2.05 
1.75 
1.79 
1.91 
3.02 
3.00 
3.02 
3.00 
3.80 
3.65 
3.68 
3.64 
4.10 
4.18 
4.24 
3.23 

1.85 
1.81 
1.84 
1.83 
2.96 
2.97 
2.97 
2.88 
3.77 
3.72 
3.60 
3.62 
4.18 
4.28 
4.17 
4.13 

1.95 
1.79 
1.67 
1.87 
3.00 
2.98 
3.03 
2.91 
3.79 
3.71 
3.63 
3.63 
4.07 
4.03 
4.18 
3.82 

through ( 19) can now be used to  find the test model 
B coefficients. Equations (49)  and (41 ) can be used 
to find D,,,, and the hydrodynamic polymer coil ra- 
dius, Rh. The polymer coil radius of gyration, R,, 
can be calculated from eq. 42. 

As in Example 1, eq. (20)  can be used to find the 
standard error of the polymer parameters from the 
functions described by eqs. (41 ) , (42) ,  and (49) .  If 
sl), SR(:, and S R h  are the standard error of the true 
diffusion coefficient, dynamic radius of gyration and 
hydrodynamic radius, respectively, then 

ksl' So 
SRh = (K) zj 

(54)  

(55) 

The B coefficients, the polymer parameters, and 
all standard errors are listed in Table VIII. Figure 
2 is the Zimm plot for the DLS example. The fit of 
experimental data is shown to be adequate. The ad- 
justed correlation coefficient, r ,  calculated from eq. 
( 13), has a value of 0.994, which also indicates that 
the model gives a good fit to the data. 

EXAMPLE 3 (SLS WITH UNJUSTIFIED 
MODEL) 

If data analysis is done without performing a t-test 
to  remove unjustified terms in the model, results 

can be misleading. This is demonstrated by Example 
3, which is a reanalysis of the SLS data of Example 
2 without using model justification. In this example, 
all terms of the coded model are retained after 
regression. The Zimm plot, Figure 3, shows an ex- 
cellent fit of the unjustified model to the data. Also, 
the adjusted correlation coefficient has a value of 
0.998, which indicates a better fit than the model of 
Example 1. However, the molecular parameters cal- 
culated for Example 3 ( M ,  = 3.1 X lo7  g/mol, Rg 
= 4700 A, and A2 = 9.1 X mL mol/g2) are 
significantly larger than determined in Example 1 
( Mw = 1.2 X lo7 g/mol, Rg = 2900 A, and A2 = 2.7 
X mL mol/g2). These molecular parameters 
are too large to be consistent with the intrinsic vis- 
cosity measured for this polymer-solvent system, 
17.0 dL/g. Thus, without model justification, erro- 
neous conclusions can be obtained when analyzing 
light scattering data. 

CONCLUSIONS 

The data analysis technique detailed above, which 
employs a factorial experimental design, can be used 
to establish a light-scattering model that is statis- 
tically justified. Calculations are straightforward and 
can be easily programmed. The model can thereafter 
be used to estimate macromolecular parameters such 
as  polymer coil size, viral and diffusional coefficients, 
and molecular weight. In addition, confidence in- 
tervals can be found for the polymer parameters es- 
timated from the model. 
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Table VII Example 2 (DLS) Coded Test Model 

Confidence Limits 
Standard 

Coefficient Value" Errorb Upper Lower 

b0 3.38 X lo-' 7.44 x 10-10 3.52 X lo-' 3.25 X lo-' 
bl 3.66 x 10-9 1.64 X lo-" 3.96 x 10-~ 3.37 x 10-9 
b2 -5.18 X lo-" 9.16 X lo-" -3.52 X lo-'' -6.83 X lo-'' 
b3 -2.49 X lo-" 7.33 x 10-11 1.08 X lo-'' -1.58 X lo-'' 
b4 -2.15 X lo-'' 1.64 X lo-'' 8.18 X lo-'' -5.11 X lo-'' 
b5 5.57 x 10-12 9.16 X lo-" 1.71 X lo-'' -1.60 X lo-'' 

bo = R - 5 (b, + bs). 
so = \/25u, + 25u, + V,. 

We wish to thank the Department of Energy (contract 
number DE-AC22-92BC 14882) for its support of this 
work and Hartono Halim for his assistance in obtaining 
the light-scattering experimental data. 

NOMENCLATURE 

Second viral coefficient 
Third viral coefficient 
Coefficients of the test model, eq. (1) 
Coefficients of the coded test model, eq. 

Vector containing bj coefficients 
Solution concentration 
Apparent translational diffusion coefi- 

True translational diffusion coefficient 
Index counter for eq. ( 11 ) 
Index counter for experimental test con- 

Index counter for model coefficients 
Light-scattering optical constant 
Spacing constant for Zimm Plot 
Boltzman constant 
Matrix defined by Table I1 
Transpose of matrix _M 
Weight average molecular weight 
Total number of test conditions 
Refractive index 
Average response at  test condition i 
Average response of all test conditions 
Vector containing Ri responses 
Polymer radius of gyration 
Polymer hydrodynamic radius 
Rayleigh ratio of light scattering inten- 

Adjust,ed correlation coefficient 

( 8 )  

cient 

ditions 

sities 

Standard error of the second viral coeffi- 

Standard error of the true diffusional coef- 

Estimated standard error associated with 

Standard error of the weight average mo- 

Standard error of the radius of gyration 

Standard error of the radius of gyration 

Standard error of the hydrodynamic ra- 

Estimated experimental error 
Estimated standard error associated with 

Absolute temperature 
Student t distribution value a t  90% con- 

Dependent variable of eq. ( 2 0 )  
Variance-covariance matrix 
Variance associated with coded test model 

Independent variables of eq. (20)  
Real-space independent variable 
Average value of X independent variables 
Half of separation value between X in- 

Coded space independent variable 
Real-space independent variable 
Average value of Y independent variables 
Half of separation value between the Y 

Coded space independent variable 
Number of measurements at a given test 

Coefficient in eqs. (40)  and (42)  

cient 

ficient 

real-space model coefficients 

lecular weight 

from DLS 

from SLS 

dius 

coded test model coefficients 

fidence level 

coefficients 

dependent variables 

independent variables 

condition 
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Table VIII Example 2 (DLS) Test Model Coefficients and Polymer Parameters 

Estimated Standard Polymer 
Coefficient Value Error Parameter 

Estimated Standard 
Value Error 

1-Or 
P 
X 
6 
E 
90 
K 

A 0  

8 
d n / d C  

u 

1.3 X lo-’ 1.5 X lo-’ True diffusional coefficient, D,,,, 1.3 X lo-’ cm2/s 1.5 X lo-’ cm2/s 
7.1 X 6.7 X lo-’ Radius of gyration, R, 2000 A 150 8, 

-4.6 X lo-’ 8.2 X lo-’ Hydrodynamic radius, Rh 1800 A 210 A 
- - - - 0 

0 
0 

- - - ~ 

- - - - 
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